Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
2.
Oncogene ; 42(22): 1857-1873, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37095257

RESUMEN

Prostate cancer (PCa), the second leading cause of death in American men, includes distinct genetic subtypes with distinct therapeutic vulnerabilities. The DACH1 gene encodes a winged helix/Forkhead DNA-binding protein that competes for binding to FOXM1 sites. Herein, DACH1 gene deletion within the 13q21.31-q21.33 region occurs in up to 18% of human PCa and was associated with increased AR activity and poor prognosis. In prostate OncoMice, prostate-specific deletion of the Dach1 gene enhanced prostatic intraepithelial neoplasia (PIN), and was associated with increased TGFß activity and DNA damage. Reduced Dach1 increased DNA damage in response to genotoxic stresses. DACH1 was recruited to sites of DNA damage, augmenting recruitment of Ku70/Ku80. Reduced Dach1 expression was associated with increased homology directed repair and resistance to PARP inhibitors and TGFß kinase inhibitors. Reduced Dach1 expression may define a subclass of PCa that warrants specific therapies.


Asunto(s)
Neoplasia Intraepitelial Prostática , Neoplasias de la Próstata , Masculino , Humanos , Neoplasia Intraepitelial Prostática/genética , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Próstata/metabolismo , Daño del ADN/genética , Factor de Crecimiento Transformador beta/genética , Proteínas del Ojo/metabolismo , Factores de Transcripción/genética
3.
Bioinformatics ; 39(5)2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37084275

RESUMEN

MOTIVATION: Cancer is one of the leading causes of death worldwide. Despite significant improvements in prevention and treatment, mortality remains high for many cancer types. Hence, innovative methods that use molecular data to stratify patients and identify biomarkers are needed. Promising biomarkers can also be inferred from competing endogenous RNA (ceRNA) networks that capture the gene-miRNA gene regulatory landscape. Thus far, the role of these biomarkers could only be studied globally but not in a sample-specific manner. To mitigate this, we introduce spongEffects, a novel method that infers subnetworks (or modules) from ceRNA networks and calculates patient- or sample-specific scores related to their regulatory activity. RESULTS: We show how spongEffects can be used for downstream interpretation and machine learning tasks such as tumor classification and for identifying subtype-specific regulatory interactions. In a concrete example of breast cancer subtype classification, we prioritize modules impacting the biology of the different subtypes. In summary, spongEffects prioritizes ceRNA modules as biomarkers and offers insights into the miRNA regulatory landscape. Notably, these module scores can be inferred from gene expression data alone and can thus be applied to cohorts where miRNA expression information is lacking. AVAILABILITY AND IMPLEMENTATION: https://bioconductor.org/packages/devel/bioc/html/SPONGE.html.


Asunto(s)
Neoplasias de la Mama , MicroARNs , ARN Largo no Codificante , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Redes Reguladoras de Genes , Neoplasias de la Mama/genética , Aprendizaje Automático , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/genética
4.
Nat Commun ; 14(1): 2126, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37105962

RESUMEN

Checkpoint immunotherapy (CPI) has increased survival for some patients with advanced-stage bladder cancer (BCa). However, most patients do not respond. Here, we characterized the tumor and immune microenvironment in pre- and post-treatment tumors from the PURE01 neoadjuvant pembrolizumab immunotherapy trial, using a consolidative approach that combined transcriptional and genetic profiling with digital spatial profiling. We identify five distinctive genetic and transcriptomic programs and validate these in an independent neoadjuvant CPI trial to identify the features of response or resistance to CPI. By modeling the regulatory network, we identify the histone demethylase KDM5B as a repressor of tumor immune signaling pathways in one resistant subtype (S1, Luminal-excluded) and demonstrate that inhibition of KDM5B enhances immunogenicity in FGFR3-mutated BCa cells. Our study identifies signatures associated with response to CPI that can be used to molecularly stratify patients and suggests therapeutic alternatives for subtypes with poor response to neoadjuvant immunotherapy.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias de la Vejiga Urinaria , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Terapia Neoadyuvante , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Perfilación de la Expresión Génica , Músculos/patología , Microambiente Tumoral/genética
5.
Cancer Res Commun ; 3(3): 404-419, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36911097

RESUMEN

While immunotherapies such as immune checkpoint blockade and adoptive T-cell therapy improve survival for a subset of human malignancies, many patients fail to respond. Phagocytes including dendritic cells (DC), monocytes, and macrophages (MF) orchestrate innate and adaptive immune responses against tumors. However, tumor-derived factors may limit immunotherapy effectiveness by altering phagocyte signal transduction, development, and activity. Using Cytometry by Time-of-Flight, we found that tumor-derived GCSF altered myeloid cell distribution both locally and systemically. We distinguished a large number of GCSF-induced immune cell subset and signal transduction pathway perturbations in tumor-bearing mice, including a prominent increase in immature neutrophil/myeloid-derived suppressor cell (Neut/MDSC) subsets and tumor-resident PD-L1+ Neut/MDSCs. GCSF expression was also linked to distinct tumor-associated MF populations, decreased conventional DCs, and splenomegaly characterized by increased splenic progenitors with diminished DC differentiation potential. GCSF-dependent dysregulation of DC development was recapitulated in bone marrow cultures in vitro, using medium derived from GCSF-expressing tumor cell cultures. Importantly, tumor-derived GCSF impaired T-cell adoptive cell therapy effectiveness and was associated with increased tumor volume and diminished survival of mice with mammary cancer. Treatment with neutralizing anti-GCSF antibodies reduced colonic and circulatory Neut/MDSCs, normalized colonic immune cell composition and diminished tumor burden in a spontaneous model of mouse colon cancer. Analysis of human colorectal cancer patient gene expression data revealed a significant correlation between survival and low GCSF and Neut/MDSC gene expression. Our data suggest that normalizing GCSF bioactivity may improve immunotherapy in cancers associated with GCSF overexpression. Significance: Tumor-derived GCSF leads to systemic immune population changes. GCSF blockade restores immune populations, improves immunotherapy, and reduces tumor size, paralleling human colorectal cancer data. GCSF inhibition may synergize with current immunotherapies to treat GCSF-secreting tumors.


Asunto(s)
Neoplasias del Colon , Células Supresoras de Origen Mieloide , Humanos , Ratones , Animales , Células Mieloides , Transducción de Señal , Linfocitos Infiltrantes de Tumor , Neoplasias del Colon/metabolismo
6.
Res Sq ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36712010

RESUMEN

Prostate cancer (PCa), the second leading cause of death in American men, includes distinct genetic subtypes with distinct therapeutic vulnerabilities. The DACH1 gene encodes a winged helix/Forkhead DNA-binding protein that competes for binding to FOXM1 sites. Herein, DACH1 gene deletion within the 13q21.31-q21.33 region occurs in up to 18% of human PCa and was associated with increased AR activity and poor prognosis. In prostate OncoMice, prostate-specific deletion of the Dach1 gene enhanced prostatic intraepithelial neoplasia (PIN), and was associated with increased TGFb activity and DNA damage. Reduced Dach1 increased DNA damage in response to genotoxic stresses. DACH1 was recruited to sites of DNA damage, augmenting recruitment of Ku70/Ku80. Reduced Dach1 expression was associated with increased homology directed repair and resistance to PARP inhibitors and TGFb kinase inhibitors. Reduced Dach1 expression may define a subclass of PCa that warrants specific therapies.

8.
Nat Commun ; 13(1): 6575, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323682

RESUMEN

Cancers arising from the bladder urothelium often exhibit lineage plasticity with regions of urothelial carcinoma adjacent to or admixed with regions of divergent histomorphology, most commonly squamous differentiation. To define the biologic basis for and clinical significance of this morphologic heterogeneity, here we perform integrated genomic analyses of mixed histology bladder cancers with separable regions of urothelial and squamous differentiation. We find that squamous differentiation is a marker of intratumoral genomic and immunologic heterogeneity in patients with bladder cancer and a biomarker of intrinsic immunotherapy resistance. Phylogenetic analysis confirms that in all cases the urothelial and squamous regions are derived from a common shared precursor. Despite the presence of marked genomic heterogeneity between co-existent urothelial and squamous differentiated regions, no recurrent genomic alteration exclusive to the urothelial or squamous morphologies is identified. Rather, lineage plasticity in bladder cancers with squamous differentiation is associated with loss of expression of FOXA1, GATA3, and PPARG, transcription factors critical for maintenance of urothelial cell identity. Of clinical significance, lineage plasticity and PD-L1 expression is coordinately dysregulated via FOXA1, with patients exhibiting morphologic heterogeneity pre-treatment significantly less likely to respond to immune checkpoint inhibitors.


Asunto(s)
Carcinoma de Células Escamosas , Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Transicionales/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Filogenia , Neoplasias de la Vejiga Urinaria/patología , Linaje de la Célula
9.
Sci Adv ; 8(40): eabo8043, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36197969

RESUMEN

The long-term survival of patients with advanced urothelial carcinoma (UCa) is limited because of innate resistance to treatment. We identified elevated expression of the histone methyltransferase EZH2 as a hallmark of aggressive UCa and hypothesized that EZH2 inhibition, via a small-molecule catalytic inhibitor, might have antitumor effects in UCa. Here, in a carcinogen-induced mouse bladder cancer model, a reduction in tumor progression and an increase in immune infiltration upon EZH2 inhibition were observed. Treatment of mice with EZH2i causes an increase in MHC class II expression in the urothelium and can activate infiltrating T cells. Unexpectedly, we found that the lack of an intact adaptive immune system completely abolishes the antitumor effects induced by EZH2 catalytic inhibition. These findings show that immune evasion is the only important determinant for the efficacy of EZH2 catalytic inhibition treatment in a UCa model.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Animales , Carcinógenos , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Histona Metiltransferasas , Ratones , Neoplasias de la Vejiga Urinaria/metabolismo
10.
Sci Rep ; 12(1): 16538, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192513

RESUMEN

Human cancers display a restricted set of expression profiles, despite diverse mutational drivers. This has led to the hypothesis that select sets of transcription factors act on similar target genes as an integrated network, buffering a tumor's transcriptional state. Noninvasive papillary urothelial carcinoma (NIPUC) with higher cell cycle activity has higher risk of recurrence and progression. In this paper, we describe a transcriptional network of cell cycle dysregulation in NIPUC, which was delineated using the ARACNe algorithm applied to expression data from a new cohort (n = 81, RNA sequencing), and two previously published cohorts. The transcriptional network comprised 121 transcription factors, including the pluripotency factors SOX2 and SALL4, the sex hormone binding receptors ESR1 and PGR, and multiple homeobox factors. Of these 121 transcription factors, 65 and 56 were more active in tumors with greater and less cell cycle activity, respectively. When clustered by activity of these transcription factors, tumors divided into High Cell Cycle versus Low Cell Cycle groups. Tumors in the High Cell Cycle group demonstrated greater mutational burden and copy number instability. A putative mutational driver of cell cycle dysregulation, such as homozygous loss of CDKN2A, was found in only 50% of High Cell Cycle NIPUC, suggesting a prominent role of transcription factor activity in driving cell cycle dysregulation. Activity of the 121 transcription factors strongly associated with expression of EZH2 and other members of the PRC2 complex, suggesting regulation by this complex influences expression of the transcription factors in this network. Activity of transcription factors in this network also associated with signatures of pluripotency and epithelial-to-mesenchymal transition (EMT), suggesting they play a role in driving evolution to invasive carcinoma. Consistent with this, these transcription factors differed in activity between NIPUC and invasive urothelial carcinoma.


Asunto(s)
Carcinoma in Situ , Carcinoma Papilar , Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Carcinoma Papilar/patología , Carcinoma de Células Transicionales/genética , Carcinoma de Células Transicionales/patología , Ciclo Celular/genética , Redes Reguladoras de Genes , Humanos , Factores de Transcripción/genética , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
11.
Nat Commun ; 13(1): 4000, 2022 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-35810190

RESUMEN

Melanoma cells display distinct intrinsic phenotypic states. Here, we seek to characterize the molecular regulation of these states using multi-omic analyses of whole exome, transcriptome, microRNA, long non-coding RNA and DNA methylation data together with reverse-phase protein array data on a panel of 68 highly annotated early passage melanoma cell lines. We demonstrate that clearly defined cancer cell intrinsic transcriptomic programs are maintained in melanoma cells ex vivo and remain highly conserved within melanoma tumors, are associated with distinct immune features within tumors, and differentially correlate with checkpoint inhibitor and adoptive T cell therapy efficacy. Through integrative analyses we demonstrate highly complex multi-omic regulation of melanoma cell intrinsic programs that provide key insights into the molecular maintenance of phenotypic states. These findings have implications for cancer biology and the identification of new therapeutic strategies. Further, these deeply characterized cell lines will serve as an invaluable resource for future research in the field.


Asunto(s)
Melanoma , MicroARNs , ARN Largo no Codificante , Metilación de ADN , Humanos , Melanoma/metabolismo , Melanoma/patología , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Transcriptoma
13.
STAR Protoc ; 2(2): 100483, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33982016

RESUMEN

Cellular and molecular aberrations contribute to the disparity of human cancer incidence and etiology between ancestry groups. Multiomics profiling in The Cancer Genome Atlas (TCGA) allows for querying of the molecular underpinnings of ancestry-specific discrepancies in human cancer. Here, we provide a protocol for integrative associative analysis of ancestry with molecular correlates, including somatic mutations, DNA methylation, mRNA transcription, miRNA transcription, and pathway activity, using TCGA data. This protocol can be generalized to analyze other cancer cohorts and human diseases. For complete details on the use and execution of this protocol, please refer to Carrot-Zhang et al. (2020).


Asunto(s)
Genómica/métodos , Modelos Genéticos , Neoplasias/genética , Metilación de ADN/genética , Bases de Datos Genéticas , Femenino , Humanos , Masculino , MicroARNs/genética , Transcripción Genética/genética
15.
Cell Rep ; 34(5): 108707, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33535033

RESUMEN

RTK/RAS/RAF pathway alterations (RPAs) are a hallmark of lung adenocarcinoma (LUAD). In this study, we use whole-genome sequencing (WGS) of 85 cases found to be RPA(-) by previous studies from The Cancer Genome Atlas (TCGA) to characterize the minority of LUADs lacking apparent alterations in this pathway. We show that WGS analysis uncovers RPA(+) in 28 (33%) of the 85 samples. Among the remaining 57 cases, we observe focal deletions targeting the promoter or transcription start site of STK11 (n = 7) or KEAP1 (n = 3), and promoter mutations associated with the increased expression of ILF2 (n = 6). We also identify complex structural variations associated with high-level copy number amplifications. Moreover, an enrichment of focal deletions is found in TP53 mutant cases. Our results indicate that RPA(-) cases demonstrate tumor suppressor deletions and genome instability, but lack unique or recurrent genetic lesions compensating for the lack of RPAs. Larger WGS studies of RPA(-) cases are required to understand this important LUAD subset.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias Pulmonares/genética , Taquicininas/metabolismo , Secuenciación Completa del Genoma/métodos , Humanos
16.
Cell Rep Med ; 2(12): 100472, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-35028613

RESUMEN

Understanding the molecular determinants that underpin the clinical heterogeneity of non-muscle-invasive bladder cancer (NMIBC) is essential for prognostication and therapy development. Stage T1 disease in particular presents a high risk of progression and requires improved understanding. We present a detailed multi-omics study containing gene expression, copy number, and mutational profiles that show relationships to immune infiltration, disease recurrence, and progression to muscle invasion. We compare expression and genomic subtypes derived from all NMIBCs with those derived from the individual disease stages Ta and T1. We show that sufficient molecular heterogeneity exists within the separate stages to allow subclassification and that this is more clinically meaningful for stage T1 disease than that derived from all NMIBCs. This provides improved biological understanding and identifies subtypes of T1 tumors that may benefit from chemo- or immunotherapy.


Asunto(s)
Perfilación de la Expresión Génica , Músculos/patología , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación/genética , Mycobacterium bovis , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Recurrencia Local de Neoplasia/patología , Estadificación de Neoplasias , PPAR gamma/genética , Transcripción Genética , Proteína p53 Supresora de Tumor/genética , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/patología
18.
Eur Urol ; 78(4): 533-537, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32684305

RESUMEN

Stage T1 bladder cancers have the highest progression and recurrence rates of all non-muscle-invasive bladder cancers (NMIBCs). Most T1 cancers are treated with bacillus Calmette-Guérin (BCG), but many will progress or recur, and some T1 patients will die from bladder cancer. Particularly aggressive tumors could be treated with early cystectomy. To better understand the molecular heterogeneity of T1 cancers, we performed transcriptome profiling and unsupervised clustering, and identified five consensus subtypes of T1 tumors treated with repeat transurethral resection (reTUR) and induction and maintenance BCG. The T1-LumGU subtype was associated with carcinoma in situ (CIS; six/13, 46% of all CIS), had high E2F1 and EZH2 expression, and was enriched in E2F target and G2M checkpoint hallmarks. The T1-Inflam subtype was inflamed and infiltrated with immune cells. While most T1 tumors were classified as luminal papillary, the T1-TLum subtype had the highest median luminal papillary score and FGFR3 expression, no recurrence events, and the fewest copy number gains. T1-Myc and T1-Early subtypes had the most recurrences (14/30 within 24 mo), the highest median MYC expression, and, when combined, had significantly worse recurrence-free survival than the other three subtypes. T1-Early had five (38%) recurrences within the first 6 mo of BCG, and repressed IFN-α and IFN-γ hallmarks and inflammation. We developed a single-patient T1 classifier and validated our subtype biology in a second cohort of T1 tumors. Future research will be necessary to validate the proposed T1 subtypes and to determine if therapies can be individualized for each subtype. PATIENT SUMMARY: We identified and characterized expression subtypes of high-grade stage T1 bladder cancer that are biologically heterogeneous and have variable responses to bacillus Calmette-Guérin treatment. We validated the subtypes and describe a single-patient classifier.


Asunto(s)
Neoplasias de la Vejiga Urinaria/clasificación , Neoplasias de la Vejiga Urinaria/patología , Terapia Combinada , Humanos , Estadificación de Neoplasias , Transcriptoma , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia
19.
Cancer Cell ; 37(5): 639-654.e6, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32396860

RESUMEN

We evaluated ancestry effects on mutation rates, DNA methylation, and mRNA and miRNA expression among 10,678 patients across 33 cancer types from The Cancer Genome Atlas. We demonstrated that cancer subtypes and ancestry-related technical artifacts are important confounders that have been insufficiently accounted for. Once accounted for, ancestry-associated differences spanned all molecular features and hundreds of genes. Biologically significant differences were usually tissue specific but not specific to cancer. However, admixture and pathway analyses suggested some of these differences are causally related to cancer. Specific findings included increased FBXW7 mutations in patients of African origin, decreased VHL and PBRM1 mutations in renal cancer patients of African origin, and decreased immune activity in bladder cancer patients of East Asian origin.


Asunto(s)
Metilación de ADN , Etnicidad/genética , Predisposición Genética a la Enfermedad , MicroARNs/genética , Mutación , Proteínas de Neoplasias/genética , Neoplasias/genética , Proteínas de Unión al ADN/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Regulación Neoplásica de la Expresión Génica , Genética de Población , Genoma Humano , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias/etnología , Neoplasias/patología , Factores de Transcripción/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...